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Symbols

A nx n tridiagonal system

A n x n matrix

a,b real solutions of equation (15)

d right side of the tridiagonal system
E nx 2(p — 1) matrix

E transpose of matrig

m order of the submatrixaf = n/p)

n order of the matrix

nl number of right sides of the system
p number of processors

\Y nx 2(p — 1) matrix

v vectors

v,w  vectors

X solution of the tridiagonal system
X nx 1 vector

X, X* notation introduced in accuracy analysis
Y nx 2(p — 1) matrix

V4 2(p-1) x2(p— 1) matrix

a communication latency (start time)
B transmission rate (bandwidth)

AA AA=VE'

A off-diagonal elements of matrix A
M diagonal elements of matrix A

0t inverse of matrix ()

Abbreviations:

ADI alternating direction implicit

CFD computational fluid dynamics
MFLOPS million floating-point operations per second
MIMD  multiple-instruction multiple-data
PDD parallel diagonal dominant

PDE partial differential equation

RCD recursive doubling

RISC reduced instruction set computer
SIMD  single-instruction multiple-data
SOR successive over relaxation

SPP simple parallel prefix

OER odd-even reduction

STT symmetric Toeplitz tridiagonal






Abstract

The parallel diagonal dominant (PDD) algorithm is an efficient tridiagonal
solver. This paper presents for study a variation of the PDD algorithm, the reduced
PDD algorithm. The new algorithm maintains the minimum communication provided
by the PDD algorithm, but has a reduced operation count. The PDD algorithm also
has a smaller operation count than the conventional sequential algorithm for many
applications. Accuracy analysis is provided for the reduced PDD algorithm for sym-
metric Toeplitz tridiagonal (STT) systems. Implementation results on Langley’s Intel
Paragon and IBM SP2 show that both the PDD and reduced PDD algorithms are effi-
cient and scalable.

1.0. Introduction algorithms have been proposed (refs. 5, 6, and 7), includ-
Distributed el domi ing the recursive doubling reduction method (RCD)
Istributed-memory parallel computers dominate developed by Stone (ref. 8) and the cyclic reduction or

today's parallel computing arena. These machines, S“C%dd even reduction method (OER) develo
- ped by Hock-
as the Kendall Square KSR-1, Intel Paragon, TMC oy (ref 9). In general, parallel tridiagonal solvers

%ADS and the recently announced Ian/l SdP?_ and h(.:rﬁy require global communications, which makes them inef-
concurrent systems, successtully -deliver: high- e n; on distributed-memory architectures. Recently,
performance computing power for solving certain of the we have taken a new approach: to increase parallel per-
so-called “grand-challenge” problems (ref. 1). Despite formance by introducing a bounded numerical error.

initial SUCCESS, parallel _machin_es hgve not_been WiOIerTwo new algorithms, namely the parallel diagonal domi-
accepted in the production engineering environment. On ant (PDD) algorithm (ref. 2) and the simple parallel pre-

a paralle_l computing system, a task has to be partitione ix (SPP) algorithm (ref. 10), have been proposed for
and distributed appropriately among processors to reduc‘?nuItiple-instruction multiple-data (MIMD) and single-

communication cost and to achley_e I(_)ad balance. Moreinstruction multiple-data (SIMD) machines, respectively.
importantly, even with careful partitioning and mapping,

. . - ) These two algorithms take advantage of the fact that trid-
the performance of an algorithm might still be unsatisfac-

i ) ) iagonal systems arising in compact schemes are diagonal
tory because conventional sequential algorithms may bedominant. Backed by rigorous accuracy analyses, the

serial in nature and may not be implemented efficiently algorithms truncate communication and computation

on parall_el machines. I_n many cases, new algor'thmswithout degrading the accuracy of the calculations.
must be introduced to increase parallelism and to take

advantage of the computing power of the scalable paral- In this paper, a new algorithm, the reduced PDD
lel hardware. algorithm, is studied based on the same approach:

Solving tridiagonal systems is a basic computational increasing  parallel - performance by introducing a
kernel of many computational fluid dynamics (CFD) boqno_led numerical error. _The redu_ced.PDD alg(_)r!thm, a
applications. Tridiagonal systems appear in multigrid varlatlon_of t_he PDD. algorithm, maintains the minimum
methods, alternating direction implicit (ADI) method, Ccommunication provided by the PDD algorithm, but has
wavelet collocation method, and in-line successive over@ reduced operation count. The reduced PPD algorithm
relaxation (SOR) preconditioners for conjugate gradient also has a smal!er operation count_tha_n the conventional
methods (ref. 2). In addition to solving partial differential S€quential algorithm for many applications. The empha-
equations (PDE), tridiagonal systems also arise in digitalSiS of this study. is on implementation issues and perfor-
signal processing, image processing, stationary timeMance comparisons of the PDD and reduced PDD
series analysis, and spline curve fitting (ref. 3). One falgorlthm_. Most of the theoretical results, mcludlng the
direct motivation for developing an efficient kernel for introduction of the PDD and reduced PDD algorithm,
solving tridiagonal systems at the National Aeronautics ¢an be found in reference 2.
and Space Administration (NASA) is that the implicit

. . This paper is organized as follows. Section 2 pro-

systems of compact schemes (ref. 4), which are relatively . )
new finite-difference schemes widely used in production \{ldes the background of the para.IIeI PDD algorithm. Sec-
codes at Langley Research Center and Ames Researc%on 3 mtroducgs the New algorithm, the reduqed PDD
Center, are tridiagonal. algorithm. Section 4'g|ves an accuracy analysis for the
’ reduced PDD algorithm. Experimental results on the
Intensive research has been carried out on the develintel Paragon and IBM SP2 multicomputer are presented

opment of efficient parallel tridiagonal solvers. Many in section 5. Performance comparison of the newly



proposed algorithm and other existing algorithms, and ofchanges, and assuming that&ls are invertible, equa-
the two parallel platforms are also discussed in this sec+ion (1) can be solved by
tion. Section 6 provides concluding remarks. -
x = Ald = (A+VET)d (3)
2.0. Parallel Diagonal Dominant (PDD ~ ~ ~ ~
g ( ) x = Ald-AVU+ETAIV)IETA D ()

Algorithm
A tridiagonal system is a linear system of equations Let

Ax = d (1) A% = d (5)
where X=(Xy,....%)' and d=(dy,...,.d)" are AY = V (6)

n-dimensional vectors and is a diagonally dominant
tridiagonal matrix with orden: h = ETX (7)
_bo Co | Z=I1+ETY (8)
a; bycg Zy = h )]
A= S = [a,b,c] (2 Ax = Yy (10)

S ' Equation (4) becomes
ay_2 bp_p Ch_> q *) N

a,_1b,_4 X = X—AX (11)

In equations (5) and (6% andY are solved by the

To solve equation (1) efficiently on parallel comput- |ower/upper (LU) decomposition method. By the struc-

n=pm, wherep is the number of processors available.

The matrixA in equation (1) can be written as e )
a @) Ai[x('),v('),w(')] = [d('), am€o C(i+l)m—1em—1] (12)

. i=0,...,p-1. Herex() and() are thén block of
where A is a block diagonal matrix with diagonal sub- andd, respectively, and/(), w(i) are possible nonzero
matrices A(i=0,...,p-1). The submatrices column vectors of théh row block ofY. Equation (12)
A(i=0,...,p-1) aremx mtridiagonal matrices. Leg implies that we only need to solve three linear systems of
be a column vector with itth (0<i<n-1) element  order m with the same LU decomposition for each
being one and all the other entries being zero. We have (i=0,...,p-1).

A = A+AA

Solving equation (9) is the major computation
AA = [amem, Crn—18m—1 @m€arr Com—1€2m_1r -+ involved in the conquer part of our algorithms. Different
approaches have been proposed for solving equation (9),

[ ol ] which results in different algorithms for solving tridiago-
m-1 nal systems (ref. 5). The matixin equation (9) has the
el form
m
C(p—1)m—1e(p—l)m—1} . = VET 1 Wsr?)—l 0
' (1) (1)
elo-1ym-1 Vo 1 0wy
| &p-vm | ViRy 0 1w, o

where bothv andE aren x 2(p — 1) matrices. Thus, we
have

A= A+VET

Based on the matrix modification formula originally
defined by Sherman and Morrison (ref. 11) for rank-one L i
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wherev(), w(l) fori =0, ..., p— 1 are solutions of equa- than the number of processors. The PDD algorithm has
tion (12) and the 1's come from the identity matrix  a larger operation count than the Thomas algorithm.
Here and throughout, the subindex indicates the compo-However, for a sufficiently large number of processors
nent of the vector. In practice, especially for a diagonally and an efficient hardware platform, the computation/
dominant tridiagonal system, the magnitude of the lastcommunication ratio of the PDD algorithm is high
component ofv(), v{) | and the first component of enough to render its performance comparable to the best
wi(®), W(()l) may be smaller than machine accuracy when case performance of the Thomas algorithm which was
p«n. (See section 4 for detailed accuracy analysis.)achieved by solving multiple right-hand sides simulta-
In this case,w(()') and Vr('r|1)—1 can be dropped, and neously. The reduced PDD algorithm is proposed to fur-
becomes a diagonal block system consisting of ther enhance computation because it has the same
(p-1)2x 2 independent blocks. Thus, equation (9) can communication cost as the PDD algorithm but has a
be solved efficiently on parallel computers, which leads reduced operation count. For some applications, the
to the highly efficient parallel diagonal dominant (PDD) reduced PDD may have a smaller operation count than

algorithm. the Thomas algorithm.

Using p processors, the PDD algorithm consists of  |n the last step, step 5, of the PDD algorithm, the
the following steps: final solutionx is computed by combining the intermedi-
Step 1. Allocate, d®. and elementsyy, C; + 1ym- 1 10 ate results concurrently on each processor:

theith node, where 8i <p- 1. (9 = %K) —y2k_1v(k) —Y2kW(k)
Step 2. Solve equation (12). All computations can be

executed in parallel opprocessors. which requires 4(- 1) sequential operations andn4
Step 3. Sen&g), vg) from theith node to the ( 1)th parallel operations ip = n/m processors are used. The
node, fori=1,...,p—-1. PDD algorithm drops off the first element wf wy and
the last element o¥, v, 1 in solving equation (9). In
Step 4. Solve reference 2, we showed that, for symmetric Toeplitz trid-
iagonal systems (see eq. (14)), we have
' 0 O Oz 0
1wl 0 Yai 0- Exr(r'])—l 0 . Pt met J
vtV 1 @Yaeid BXTY 0 Y a2, P 2 P (o)
B 1=0 i=0

in parallel on théth node for i< p-2. Then So

.angyﬁ fromztheith node to thei (+ 1) node, for for quantitative measurement), we may drop off
1=Y...p-e vi,i=j,j+1,..m-1, and w;,i=0,1,...,j—1, for

Step 5. Compute equations (10) and (11). We have ~ some integej >0, while maintaining the required accu-
racy. If we replacey; by v;, where v, =v;, for

when m is large enough (see theorem 1

0 O i=0,1,...,j-1, v, =0, for i=j,...m-1; and
Ax() = [V(i),W(i)]ByZi—l E replacew by_\7v,where\7\_/i = w; foi =~j,~...,_m—1, and
O Yai O w;, = 0,fori=0,1,...,j- 1, and uses,w instep 5, we
have
() = (1) — aAx() Step &
For each of these calculations, there are only two neigh- 0 C
boring communications. Ax0) = [7, \TV]ByZK_l E
3.0. Reduced PDD Algorithm 0 Y2k C
The PDD algorithm has efficient communications. It x(K) = %) — Ax(k) (13)

achieves good load balance and is a good choice for solv- _
ing a large single system. However, for systems with \; oy requires4d parallel operations. Replacing step 5
multiple right sides, the PDD algorithm is competitive p

only with the conventional sequential algorithm, the of the PDD algorithm by stepg,5we get the reduced PDD
Thomas algorithm (ref. 12). It is not necessarily superior algorithm. The key question for the reduced PDD algo-
to the Thomas algorithm for compact schemes and otherithm is how to find the smallest integer 0 that main-
applications when the order of the matrix is much larger tains the required accuracy.



4.0. Accuracy Analysis

The PDD algorithm reduces the communication from global to local. In addition to the reduced communication, the
reduced PDD algorithm further reduces the computation. The PDD and reduced PDD algorithms are efficient because
they have truncated communication and computation. However, this dropping may lead to an inaccurate solution. Thus,
an accuracy study is essential in applying the PDD algorithm. Some preliminary study of the accuracy of the PDD algo-
rithm has been done (refs. 5 and 13); however, the study is for general cases and only provides sufficient conditions to
guarantee a given accuracy. Unfortunately, the conditions given in references 5 and 13 are difficult to verify, and the
accuracy bound given is quite loose. A practical, tight error bound is given in reference 2 for a class of tridiagonal sys-
tems, symmetric Toeplitz tridiagonal (STT) systems. A matrix is Toeplitz if its entries along each diagonal are the same.
As a special class of tridiagonal systems, STT systems arise in many applications. For instance, the discretization matri-
ces of the compact scheme (ref. 4) &fd systems. In this section, we extend the recent accuracy analysis on STT sys-
tems to the reduced PDD algorithm.

The accuracy analysis of the reduced PDD algorithm is three-fold: first we study the decay rate of the decaying
elementsv()_,, w{)(0<i < p—1); second, we study the influence of droppiri§)_,, w§’(0<i<p—1) on the final
solution, which is the accuracy analysis of the PDD algorithm; and third, the truncation of computation is studied, based
on the accuracy analysis of the PDD algorithm. The accuracy analysis of the PDD algorithm gives the error bound of the
reduced PDD algorithm. The error bound of the reduced PDD algorithm is a recent result. See the following analysis.

A symmetric Toeplitz tridiagonal matrix has the form

_u \
AMA
A= | =INKAL =AML c 1] (14)
A
L A W
Let a andb be the real solutions of
b+t+a=cbea=1 (15)

wherec is the diagonal element of matrix [d,1] given by equation (14). Because we asslghe 2, we can further
assume thgbl <1 and/ >1 . For decay rate we have the result (ref. 2),

|vm_1| <b™m |W0| <pm
which leads to theorem 1.

Theorem 1: For any diagonal-dominant, symmetric Toeplitz tridiagonal matrix, [A, p, A] if b™~Ya is less than
machine accuracy, where a and b are the solutions of equation (15), the PDD algorithm approximates the true solution
to within machine accuracy

Theorem 1 states thatMf, - 1, Wg are less than machine accuracy, the PDD algorithm gives a satisfactory solution.
In most scientific applications, the accuracy requirement is much weaker than machine accuracy. We need to study how
the decay rate of,, - 1, Wy influences the accuracy of the final solution. kéfe the exact solution of equation (1) and
let x* be the corresponding final solution of the PDD algorithm. We have the error bound of the PDD algofithm in
norm (ref. 2):

Ix=>x1___ [pm
EIEEENCER

Let v, W be the vectors defined in equation (1\~3)be the corresponding matrix in equation (6), consisting of all the
2(p-1) vectors, and let be the solution of the reduced PDD algorithm. Then

(16)

x = Atd— AV +ETALV)ETA L]



similar to the accuracy analysis of the PDD algorithm (ref. 2), we fet(1 + ETA-1V)ETA-1d . By equation (4) and
equation (55) in reference 2,

X —x* = (AW - Alv)y = (ALV - A-LV)ETX

Therefore, for a given integgr O,

m-1 ) )
LEL M) T = A A = [0Vl 2| 1|y [coya-bX)
[I] Aa+ me 1b2') = 1-b2
Since
(- 0 .
pa-p2-) 05 o Z|b|2m 0= ol =-1oim) L=l 1
& 1 |1 b5 & 4 g7 - b2|D 1-[b] 10|
i = J i=j
(L= 16I™) + |bI™(1— 6™~ 5 3|
) 1-b2(1-[b])
X =x*[ 1| _1-b2 |, [bU(1-[0]™) +|b™(1~[p/™=I*1) _ bl +|b™
I Aal|1—p2(m+i) l(1-b2)|(1=|b]) CE

By inequality (16), inequality (18) gives the error bound of the reduced PDD algorithm.

Ix=x] _Ix=x* ], [x* —x]

MW

b MR,

- Na - 1)
)\%M—‘_bil_:_b_z__)_%qaj—l)

O] —p2(m+1)
For a given error toleran@e> 0, the right side of inequality (18)

(17)

IN

(18)

e * ||b|(faf =y N
A 1
MDDM ‘ b(1—b2m) %ua—n

p2(m+1)

if and only if

|)\|(|al 1) —p2(m+1)
log|b

Iog{lhl(lal—l)gt - L an{m ‘bu—bzm)

i

> (19)

When‘? <1
A

Ix=x] . o™ 3. 0, |b|J
ERRNCED |>\|—|b|D IAI(lal -



and we get a simpler inequality for the minimal nunjber

m 1
loglA|(Jal - 1) e = bRl (lal - ) + P

log|b

i> (20)
When |bM is less than machine accuracy, inequality (19) becomes the same as inequality (20), and we have an even
simpler formula:

.5 loglAl(jal —1)e

J log[b] (21)

Inequality equation (21) gives a lower bound of the number of variables that need to be modified in equation (13) for a
given error tolerance > 0. Usually,j is quite small. For instance, when error toleramequals 10%, j equals either 10

or 7 when\, the magnitude of the off-diagonal elements, eqéaﬂfs %1 respectively, the diagonal elements being equal

to 1. The integejreduces to 4 fob <A < %

75MFLOPS each. The heart of all distributed-memory
parallel computers is the interconnection network that
. links the processors together. The SP2 high-performance
implemented on the 48-node IBM SP2 and 72-node InteIswitch is a multistage packet-switched Omega network

Paragon available at Langley Research Center. Both th?hat provides a minimum of four paths between any pair

SP2” alnd Partagor:h rtnaghlr;es are d|str|bl_Jted-memoryof nodes in the system. The Intel Paragon processors are
parallel computers that adopt message-passing Communiz,,nacted in a two-dimensional (2-D) rectangular mesh

cation pare:jd|gmfstr?ndséuzp_portt;]nrtufal nlgmolrly. anh ?roitopology. The diameter of the 2-D mesh topology
::essor gno %).0 te i IS f' er ur;c |or|1?a}syceq§|va; en/increases with the number of processors. Communi-
0 a reduced instruction set computer ( ) System cation delay on a message-passing distributed-memory

6000 desktop system (thin node) or a RISC System/6000m hi I | : -
deskside system (wide node). The Paragon XP/S super. achine usually can be modeled by using two parame

. i ; fers, the latency (start time) and transmission rate (in
computer uses the i860 XP microprocessor that mcludes[erms of transrrglis(sion time )per byf)For the SP2 tfse

a RISC integer core processing unit and three separat?atency is 30usec and transmission rate isigec. For

on-chip caches for page translation, data, and instruc-P : i :
. . . aragon, the latency is 48ec and transmission rate is
tions. The Langley SP2 has 48 wide nodes W'thGusegc y

128 Mbytes local memory and peak performance of 266
million floating-point operations per second (MFLOPS) Table 1 gives the computation and communication
each. In contrast, the Langley Paragon has 72 nodes witlecount of the PDD algorithm. The best conventional
32 Mbytes of local memory and peak performance of sequential algorithm for the LU decompositiorethod

5.0. Experimental Results
The PDD and the reduced PDD algorithms were

Table 1. Computation and Communication Counts of PDD Algorithm

Best PDD
System Matrix sequential Computation Communicatio
Nonperiodic &-7 17% -4 20+ 123
Single
Periodic 14 - 16 17% —4 200+ 1B
Nonperiodic (5n—-3)+ nl %D + 1%- nl (20 +8nl- B)
Multiple i
right sides
- n
Periodic (7Tn=1)+nl %B + 1%- nl (20 +8nl- B)




for tridiagonal systems is the Thomas algorithm (ref. 14). Table 2. Computation and Communication Counts of Reduced
For most distributed-memory computers, the time to PDD Algorithm
communicate with nearest neighbors varies linearly with

problem size. LeS be the number of bytes to be trans- Reduced PDD

ferred. Then the transfer time to communicate with a System Computation Communication
neighbor can be expressedoas 3. Assuming 4 bytes . noo..

are used for each real number, steps 3 and 4 of the PDD ~ Sindle 115+6i-4 2+123
and reduced PDD algorithm tale+ 83 and a + 403

time, respectively, on any architecture that supports sin- Multiple ESD +4j+1% 1 | (20 +8n1.p)
gle array topology. Tridiagonal systems arising in both right sides p u|

ADI and compact scheme methods, which are two
widely used methods in CFD applications, are multiple

right-side systems. They are usually “kernels” in much () o (21), depending on the particular circumstance.
larger codes. The computation and communication Ngtice that, wherj < n/2, the reduced PDD algorithm
counts for solving multiple right-side systems_are listed 55 5 smaller operation count than that of the Thomas

in table 1, in which the factorization of matr& and 5 0rithm for periodic systems with multiple right-hand
computation ofY are not considered (see eqgs. (5) and (6) giges.

in Section 2). Parameted is the number of right-hand

sides. Note that, for multiple right-side systems, the com-
munication cost increases with the number of right-hand
sides. If the boundary conditions are periodic, the tridiag-

onal systems arising in CFD applications are periodic - .
tridiagonal systems. As shown in reference 2, the PDDggnerqI tridiagonal systems. The computation counts
: ' given in tables 1 and 2 are for general tridiagonal sys-

algorithm, and consequently the reduced PDD algorithm, ) -
TR tems. For symmetric Toeplitz tridiagonal systems, a fast
can be extended to solve periodic tridiagonal systems as
) . ..~ “ethod proposed by Malcolm and Palmer (ref. 15) has a
well. Table 1 also lists computing and communication

counts for solving periodic systems smaller compytati_on count than th_e Thomas a_llgorithm
’ for systems with single right-hand sides. It requires only

Table 2 gives the computation and communication 5n+ 2k — 3 counts for arithmetic, wherk is a decay
counts of the reduced PDD algorithm. As for the PDD parameter, depending on the diagonal dominancy of the
algorithm, it has the same parallel computation and com-system. Formulas are available to compute the upper and
munication counts for both periodic and nonperiodic sys- lower bounds of parametér(ref. 15). The computation
tems. The computational saving of the reduced PDDsavings of Malcolm and Palmer’'s method are in the LU
algorithm is not only in step 5, the final modification decomposition. For systems with multiple right-hand
step, but also in other steps. Because we nedd] ele- sides, in which the factorization cost is not considered,
ments of vectorg andw for the final modification in the  the Malcolm and Palmer's method and the Thomas
reduced PDD algorithm (eq. (13) in section 3), we only method have the same computation count. Table 3 gives
need to computeelements for each column gfin solv- the computation and communication counts of the PDD
ing equation (6). The integgrs given by equations (19), and reduced PDD algorithms based on Malcaind

While the accuracy analyses given in this study are
for Toeplitz tridiagonal systems, the PDD algorithm and
the reduced PDD algorithm can be applied for solving

Table 3. Computation and Communication Counts for Symmetric Toeplitz Systems

Best Parallel Algorithm
Algorithm Matrix sequential Computation Communication
Nonperiodic B+2k-3 142 + 2k 20 +123
PDD P
Algorithm n
Periodic 1h+2k-12 145 + 2k 2o +128
Nonperiodic B+ 2k-3 82 + 2k + 6] 20 + 8B
Reduced p
PDD
Algorithm o n :
Periodic 1h+2k-12 85 + 2k + 6] 2+ 8B




Palmer’s algorithm. The computation counts of the two 0
algorithms are reduced with the fast method used in solv- 5[
ing the subsystems. Table 3 shows the computation and 4|
communication counts for solving systems with a single 5 _g}
right-hand side. For systems with multiple right-hand & _g|-
sides, the computation counts remain the same as inS _jo}l

tables 1 and 2 for both the PDD and the reduced PDD? 12+

O Theoretical bound
® Measured

algorithms, respectively. 14}
. . . : -16}
As an illustration of the algorithm and theoretical _18 | | | | | | | |
results given in previous sections, a sample matrix is 0 5 10 15 20 25 30 35 40
tested here. This sample matrix is a periodic, symmetric, Number of modified variables

Toeplitz system Figure 1. Measured and predicted accuracy of reduced PDD

algorithm.

Wik

Parallel algorithms often exploit parallelism by sacrific-
ing mathematical efficiency. To measure the true parallel
processing gain, the sequential execution time should be
o based on a commonly used sequential algorithm. To dis-
A = = [1 1, 1} (22) tinguish it from other interpretations of speedup, the
o 3 speedup measured versus a commonly used sequential
algorithm has been calledbsolute speedup (ref. 7).
Another widely used interpretation is thelative
speedup (ref. 7), which uses the uniprocessor execution
time of the parallel algorithm as the sequential time. Rel-
ative speedup measures the performance variation of an
algorithm in terms of the number of processors and is
which arises in the compact scheme. We have commonly used in scalability studies. Both Amdahl’s
law (ref. 16) and Gustafson’s scaled speedup (ref. 17) are
[1 1 ﬂ _1, (1,3 1] based on relative speedup. In this study, we first use rela-
373 3 s tive speedup to study the scalability of the PDD and
1 reduced PDD algorithms; then, we use the absolute
e ([b,1,0] x[0,a,0] x[0, 1, b] —AB) speedup to compare these two algorithms with the con-
3 ventionally used sequential algorithm.

Wik -
R Wik
Wik

Wik -
H -

e

Wik

1
3

A =

whereAB is ann x n zero matrix, except that the first ele-

) . Because execution time varies with communicdtion
ment on the first row ib, and

computation ratio on a parallel machine, the problem size
1 3+./5 3_JE is_ an important_ factor in pe_rform_ance evaluation,_ espe-
A=Zc=23a-= b = === (23) cially for machines supporting virtual memory. Virtual
3 2 2 address space separates the user logical memory from
The reduced PDD algorithm was first implemented physicgl memory. This separa'tion allgws an extremely
on a Sun workstation with double precision to solve the [279€ Virtual memory to be provided (with a much slower
tridiagonal systemAx=d for accuracy checking. The MemMOry access time) on a sequential machine when only

right-side vectord was generated randomly. Figure 1 asmall physical memory is available. If the problem sizeT
depicts the accuracy comparison of the reduced PDD'S larger than physical memory, data must be swapped in

algorithm. The measured and predicted data have beeltfor,n af“?‘ out to secqndary memory, which may lead
converted to a common logarithm scale to make thetc_’ inefficient sequential processing and unreasonably
difference visible. Thex-coordinate is the order of Mgh speedup. If the problem size is too small, on the
matrix A;, and they-coordinate is the relative error in the Othe€r hand, when the number of processors increases,

1-norm. From figure 1, we can see that the accuracy anallhﬁ, v;/]orkloatlj c(>jn each proceslso;]. V\r']i” drop qu;;kly,
ysis provides a very good error bound. which may lead to an extremely high communication

computation ratio and unacceptably low performance. As
Speedup, one of the most frequently used perfor-studied in reference 18, the correct choice of initial prob-

mance metrics in parallel processing, is defined aslem size is the problem size that reaches the asymptotic

sequential execution time over parallel execution time. speed, the sustained uniprocessor speed corresponding to

8



the main memory access (ref. 18). The nodes of SP2 antheasured speedups. As indicated previously, the large
Paragon have different processing powers and localproblem size leads to an unreasonable superlinear
memory sizes. For a fixed 1024 right sides, following the speedup on Paragon, and the small problem size leads to
asymptotic speed concept, the order of matrix for SP2a disappointingly low performance on SP2.

was found to be 6400, and the order of matrix for

Paragon was found to be 1600. Figures 2 and 3 show the From the problem size point of view, speedup can be
measured speedup of the PDD algorithm when the largedivided into the fixed-size speedup and thescaled
problem sizen=6400 is solved on Paragon and the Speedup. Fixed-size speedup fixes the problem size.
small problem sizen=1600 is solved on SP2. For Scaled speedup scales the problem size with the number
comparison, ideal speedup, where speedup equals Of processors. Fixed-size speedup emphasizes how much

whenp processors are available, is also plottéth the ~ €xecution time can be reduced for a given application
with parallel processing. Amdahl’'s law (ref. 16) is based

on the fixed-size speedup. The scaled speedup concen-

300 trates on exploring the computational power of parallel
computers for solving otherwise intractable large prob-
— Ideal speedup lems. Depending on the scaling restrictions of the prob-

2501 © Fixed-size speedup lem size, the scaled speedup can be classified as both the

fixed-time speedup (ref. 17) and threemory-bounded
speedup (ref. 19). As the number of processors increases,
memory-bounded speedup scales problem size to utilize
the associated memory increase. In general, operation
count increases much faster than memory requirement.
Therefore, the workload on each processor will not
decrease with the increase in number of processors in
memory-bounded speedup. Thus, scaled speedup is more
likely to get a higher speedup than that of fixed-size
speedup.

200

100

Figures 4 and 5 depict the speedup of the fixed-size
and memory-bounded speedup of the PDD and the
reduced PDD algorithm, respectively, on the Intel Para-
gon. From figures 4 and 5 we can see that the PDD and
the reduced PDD algorithm have the same speedup pat-
tern. This similarity is very reasonable because these two
algorithms share the same computation and communica-
tion pattern. It has been proven that the PDD algorithm,
Figure 2. Superlinear speedup with large problem size on Intel@nd therefore the reduced PDD algorithm, are perfectly

50
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Number of processors

Paragon (1024 system of order 6400). scalable, in terms of isospeed scalability (ref. 20), on any
30
35
25— |deal speedup 30l
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Figure 3. Inefficient performance with small problem size on SP2 Figure 4. Measured speedup of PDD algorithm on Intel Paragon
(1024 system of order 1600). (1024 system of order 1600).
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Figure 5. Measured speedup of reduced PDD algorithm on IntelFigure 6. Measured speedup of PDD algorithm on a SP-2 (1024
Paragon (1024 system of order 1600). system of order 6400).

architecture that supports the ring communication net- 35
work. However, ring communication cannot be embed-

ded in 2-D mesh topologies perfectly unless a wrap- 30T
around is supported. Thus, the communication cost of the o5
algorithms increases slightly with the increase in the _
number of processors. The fact that the memory-bounded-2 20
speedups on the Paragon are slightly below the ideal & 5|
speedup is very reasonable. The influence of the commu-
nication cost has been reflected in the measured speedup. 10

5+

— ldeal speedup
O Memory-bounded speedup
O Fixed-size speedup

Figure 6 demonstrates the speedups of the PDD
algorithm on the SP2 machine. Because the one-to-one
communication of the SP2 multistage Omega network
does not increase with the number of processors, the
PDD algorithm reaches the ideal memory-bounded Figure 7. Speedup of PDD algorithm over Thomas algorithm
speedup. In accordance with the isospeed metric (1024 systems of order 1600).

(ref. 20), the PDD algorithm is perfectly scalable in the
multistage SP2 machine. 3B

1 1 1
5 10 15 20 25 30 35
Number of processors

| — Ideal speedup
O Memory-bounded speedup
O Fixed-size speedup

Although the PDD and reduced PDD have similar
relative speedup patterns, the execution times of the two 251
algorithms are very different. The reduced PDD algo- 2 0l
rithm has a smaller execution time than that of the PDD §
algorithm. For periodic systems the reduced PDD algo- # 15
rithm has an even smaller execution time than the con-
ventional sequential algorithm. The timing of the
Thomas algorithm, the PDD algorithm, and the reduced 5
PDD algorithm on a single node of the SP2 and Paragon
machine are listed in table 4. The problem size for all 0
algorithms on SP2 is=6400 andnl = 1024 and on

10+

1 1 1 1 1 ]
10 15 20 25 30 35
Number of processors

[0S

Table 4. Sequential Timing (in seconds) on Paragon and SP2 Figure 8. Speedup of reduced PDD algorithm over Thomas algo-

Machines rithm (1024 systems of order 1600).
Reduced Paragon is1 = 1600 andhl = 1024. The measured results
Thomas PDD PDD confirm the analytical results given in tables 1 and 2.
Size | algorithm | algorithm | algorithm Figures 7 and 8 show the speedup of the PDD and
Paragon | 1600  0.8265 0.9026 0.6432 reduced PDD algorithms over the conventional sequen-
SP2 6400 0.7387 0.856 0.5545 tial algorithm, the Thomas algorithm, respectively. The

10



PDD algorithm increases computation count for high References

parallelism. The reduced PDD reduces computation
count by taking advantage of diagonal dominance. Com-
pared to the Thomas algorithm, while the absolute
speedup of the PDD algorithm is worse than its relative
speedup, the reduced PDD algorithm has a better abso-
lute speedup than its relative speedup. The reduced?2.
PDD algorithm achieves a superlinear speedup over the
Thomas algorithm. Experimental results confirm that the
reduced PDD algorithm maintains the good scalability of 5
the PDD algorithm and delivers an efficient performance

in terms of execution time as well.
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6.0. Concluding Remarks
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